Cobalt in PDB 8sfm: Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State

Enzymatic activity of Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State

All present enzymatic activity of Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State:
3.1.8.1;

Protein crystallography data

The structure of Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State, PDB code: 8sfm was solved by P.Jacquet, R.Billot, A.Shimon, N.Hoekstra, C.Bergonzi, A.Jenks, D.Daude, M.H.Elias, with X-Ray Crystallography technique. A brief refinement statistics is given in the table below:

Resolution Low / High (Å) 39.72 / 1.50
Space group C 2 2 21
Cell size a, b, c (Å), α, β, γ (°) 64.11, 74.61, 137.69, 90, 90, 90
R / Rfree (%) 20.1 / 23

Other elements in 8sfm:

The structure of Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State also contains other interesting chemical elements:

Iron (Fe) 1 atom

Cobalt Binding Sites:

The binding sites of Cobalt atom in the Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State (pdb code 8sfm). This binding sites where shown within 5.0 Angstroms radius around Cobalt atom.
In total only one binding site of Cobalt was determined in the Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State, PDB code: 8sfm:

Cobalt binding site 1 out of 1 in 8sfm

Go back to Cobalt Binding Sites List in 8sfm
Cobalt binding site 1 out of 1 in the Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State


Mono view


Stereo pair view

A full contact list of Cobalt with other atoms in the Co binding site number 1 of Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State within 5.0Å range:
probe atom residue distance (Å) B Occ
D:Co402

b:19.8
occ:0.60
NE2 D:HIS199 1.9 31.9 1.0
O2 D:PO4406 1.9 26.8 0.7
OQ1 D:KCX137 2.0 26.0 1.0
ND1 D:HIS170 2.1 23.7 1.0
CD2 D:HIS199 2.8 29.9 1.0
O4 D:PO4406 2.9 43.1 0.7
P D:PO4406 2.9 52.1 0.7
CE1 D:HIS199 2.9 27.3 1.0
CX D:KCX137 3.0 29.3 1.0
CG D:HIS170 3.0 21.4 1.0
CB D:HIS170 3.1 20.0 1.0
CE1 D:HIS170 3.2 27.7 1.0
OQ2 D:KCX137 3.3 25.0 1.0
FE D:FE401 3.5 17.5 0.6
O1 D:PO4406 3.7 41.8 0.7
CE2 D:PHE97 3.9 19.3 1.0
ND1 D:HIS199 4.0 32.5 1.0
CG D:HIS199 4.0 32.6 1.0
CA D:HIS170 4.0 16.0 1.0
OD2 D:ASP256 4.0 30.1 1.0
O3 D:PO4406 4.1 35.7 0.7
NZ D:KCX137 4.1 24.3 1.0
CE1 D:HIS22 4.1 29.2 1.0
NH2 D:ARG223 4.1 39.9 1.0
CD2 D:HIS170 4.2 20.1 1.0
NE2 D:HIS22 4.2 24.5 1.0
NE2 D:HIS170 4.2 25.2 1.0
CZ D:PHE97 4.3 20.8 1.0
CE D:KCX137 4.5 20.4 1.0
CZ D:ARG223 4.6 43.1 1.0
CG D:ASP256 4.8 37.7 1.0
NE D:ARG223 4.8 45.2 1.0
OD1 D:ASP256 4.8 31.7 1.0
N D:HIS170 4.9 16.6 1.0

Reference:

P.Jacquet, R.Billot, A.Shimon, N.Hoekstra, C.Bergonzi, A.Jenks, E.Chabriere, D.Daude, M.H.Elias. Changes in Active Site Loops Conformation Relates to A Transition From Lactonase to Phosphotriesterase To Be Published.
Page generated: Tue Jul 30 20:02:41 2024

Last articles

Zn in 9JYW
Zn in 9IR4
Zn in 9IR3
Zn in 9GMX
Zn in 9GMW
Zn in 9JEJ
Zn in 9ERF
Zn in 9ERE
Zn in 9EGV
Zn in 9EGW
© Copyright 2008-2020 by atomistry.com
Home   |    Site Map   |    Copyright   |    Contact us   |    Privacy